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Abstract

The left ventricular stroke work is a measure of the work done by the left ventricle during the ejection
of blood throughout per cardiac cycle. The aim of this investigation was to propose a model to numerically
evaluate the stroke work for a healthy subject using a fluid-structure interaction (FSI) simulation during
exercise protocol. Aortic valve dimensions were calculated using an imaging technique of echocardiography.
A FSI simulation was performed using an Arbitrary Lagrangian-Eulerian (ALE) mesh. Boundary conditions
were defined by pressure loads on ventricular and aortic sides. Stroke work was predicted to increase to
121% from 60 bpm to 125 bpm, and it did not increase much above 125 bpm. Based on derived regression
equations of our FSI results of stroke work and comparing them with clinical ones, numerically-predicted
stroke work values are in good agreements with published clinical data. The slope of stroke work changes to
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mean arterial pressure, while exercise protocol, is 168.08 ml which is 12.2% less than the average slope of
clinical data. The y-axis intercepted of stroke work changes to mean arterial pressure, while exercise protocol,
is -11186 which is 15% less than the average y-axis intercept of clinical data. Our results of the specific
patient show that numerical methods can be proposed to predict good estimates of patient specific stroke
work at different heart rates.

Keywords: Aortic valve, Finite element method, Fluid solid interaction, Stroke work

1. Introduction

Measurement of stroke work is a crucial factor
in understanding the development of heart problems
and subsequent clinical diagnosis [1]. For example,
the stroke work index is a reliable criterion of left
ventricle performance which requires an invasive
procedure, and has been usually measured and
utilized in the settings of intensive care units and
operation rooms [2-4]. While invasive methods have
been used to measure stroke work, such techniques
are expensive and include risks to patients [5].
Computational procedures, however, have the
potential to determine stroke work but bypassing
such limitations.

Invasive, and cost intensive techniques have
been used so far [5-7]. For example, Loeb et al.
assessed left ventricular function after acute
myocardial infarction using stroke volume
calculation [8]. They plotted left ventricular stroke-
work index (LVSWI) versus left ventricular end-
diastolic pressure (LVEDP). Linhart, investigated
pacing-induced alterations in stroke volume in the
appraisal of myocardial function [9]. They performed
right atrial pacing in 16 subjects while right and left
heart catheterizations. They concluded when pacing
ventricular function curves were performed relating
left ventricular stroke work (SW) to LVEDP,
normal patients demonstrated a steep curve.
Hamosh, P., & Cohn, J. N. studied acute myocardial
infarction with measuring left ventricular stroke
volume [10] in 40 healthy patients. Kamoi, S. et al.
estimated accuracy of stroke volume via reservoir
pressure concept and three element windkessel
model [11]. Also, due to the fact that invasive
experiments could be risky for human subject, there
have been some studies on animals; although, no
data related to stroke work was found in some of
them but it can be derived from their hemodynamic
results [12-18].

Simultaneous simulations of Fluid-Structure
Interaction (FSI) have the potential for non-invasive
prediction of stroke work. Recently, FSI has been
utilized to investigate heart and heart valve
mechanics [19-35]. Studies include use of a two-
dimensional model to evaluate the stroke volume
and cardiac output for a healthy subject [29]. That
was done by coupling the FSI simulation with an
echo-Doppler method at rest and while exercise.
Detailed attention was taken into account to validate
the simulation against cardiac function measures
that can be reliably computed by using clinical
protocols, with varying heart rates [29]. Moreover, it
was possible to predict the effect of heart rate
increment while exercising on blood hemodynamics
through the aortic valve, and strains and stresses
experienced by the valve leaflets [29]. Developing
such models to enable stroke work would
potentially be of clinical value because they are
supposed to perform it more readily. However, so
far FSI and clinical measurements have not been
jointed to predict a patient's stroke work. Effect of
heart rate changes (e.g. due to exercise) on stroke
work of the patient have not been analyzed either.
Heart rate would be a significant parameter to
consider because it brings about large differences in
stroke work.

The aim of this research was to assess the
influence of exercise on stroke work at different
heart rates from rest to exercise. Using FSI model
and our two-dimensional aortic valve geometry, we
evaluate stroke work during exercise. The key
valves of dimensions and boundary conditions for
our study were acquired from a single volunteer,
enabling an initial assessment of the applicability of
the model for personalized healthcare.
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2. Materials and Methods

2.1 Overview
A healthy human male adult, 33 years old ( 80

kg, 175 cm, BMI: 26.1) , participated in this study.

His healthy cardiovascular function was confirmed
by clinical protocols. The informed consent was
obtained. The workflow of the study is provided in
Figure 1.

Figure 1: The workflow of the study

2.2 Numerical Approach
Systolic and diastolic pressures were recorded

during the test via a brachial pressure cuff (Figure.
2). Using echo-cardiography, the aortic valve
geometry (Figure.3) and its dimensions were
obtained (Table 1). The computer aided design
(CAD) model of the aortic valve geometry were
created with Solidworks package based on the
clinically-measured data. The leaflet mechanical
properties were considered as homogenous,
isotropic with linear stress-strain relationship [22, 24,

25, 36]. Blood was presumed to be Newtonian and
an incompressible fluid [37]. All material properties
are given in Table 2 [38, 39].

The CAD model then discritized and imported
into the finite element analysis package, Comsol
Multi-physics (v4.2, Comsol Ltd). The fluid and
strucure governing equations were applied and the
material geometries were introduced. Pressure
boundary condition was used at the inflow (the
ventricular side) and outflow (the aortic side)
boundaries for the fluid mechanics module (Figure.
3). The use of a moving ALE mesh enabled the

deformation of the fluid mesh to be tracked without
the need for re-meshing [36]. The second order
Lagrangian elements were utilized to define the
mesh. The model is capable to solve time-dependent

FSI model [23, 40]. The model then validated to
ensure its independency from mesh resolutions [29].

2.3 Analysis of Fluid Dynamics
The aortic area was calculated utilizing:

Area = π( D
2
)2 (1)

where D is the calculated ascending aortic
diameter after the sinotubular junction (Table 1).
For FSI simulations, the mean velocity numerically
was obtained at each time step of the ejection period:

Velocity integration = 0
ejection timeV.dt� (2)

where V is the mean fluid velocity through the
outlet boundary. Comparison of measurements of
velocity integration, cardiac output and stroke
volume enabled quantitative validation of the FSI
model.



Am. J. Biomed. Sci. 2018,10(3),129-138;doi:10.5099/aj180300129 © 2018 by NWPII. All rights reserved 132

Knowing the velocity integration and aortic
area, one can calculate the strock volume as Eq. (5):

Stroke volume = Velocity integration×
Aortic area (3)

The total left ventricular stroke work (SW) is
calculated by the product of left ventricular pressur

during ejection and the ejected volume of blood
integrated over the ejection interval.

Stroke work = 0
ejection timePressure×�

d(stroke volume) (4)

Figure 2: Systolic and diastolic pressures

Figure 3: Two-dimentional aortic valve geometry

Table 1: Parameters of the aortic valve geometry

Aortic side
radius

(mm)

Leaflet's
length

(mm)

Ascending
aorta radius

after
sinotubular

junction (mm)
Valve's height

(mm)

Maximum
radius of

normal aortic
root (mm)

Leaflet's
thickness

(mm)

Ventricular
side radius
(mm)

11.5 16.6 11.75 20.36 16.65 0.6 11.1
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Table 2: Mechanical properties of fluid and solid

Viscosity

(Pa.s)

Density

(kg/m3)

Young's modulus

(N/m2) Poisson ratio

3.5 x 10-3 1056 6.8 x 106 0.49

3. Results

Systolic Pressure Changes to Stroke Volume.
Figure 4 provides systolic pressure changes to

stroke volume at different heart rates. Overall, in
terms of ascending and descending heart rates, all
the curves follow the same trend. However, as heart
rate increases, the curve size becomes larger. It can
be observed that at the end of each curve, a stroke
volume decreases. This reduction in stroke volume
can indicate the blood backflow towards left
ventricle [29]. As seen in figure 4, the changes from
heart rate of 60 to 80 bpm are much lower than
those between heart rate of 98 to 147 bpm and the
next ones.

Figure 5 provides the stroke work values
during the ejection period while increasing the heart
rate. A quadratic polynomial equation with a high
accuracy (R² = 0.983) was fitted to the calculated
data. The stroke work through exercise protocol
increased by 121% from 60 to 125 bpm, and it did
not increase much above 125 bpm. In a healthy
subject, at higher heart rates the filling time of the
left ventricle during diastole will decrease which
brings down the preload and as a result of this the
stroke volume will not show appropriate
incrimination. This is because of the fact that the
stroke volume does not increase considerably at the
heart rate over 125 bpm [28]. Stroke volume changes
were followed by bigger increment after heart of 80
(Figure 4).

Figure 4: Systolic pressure changes to stroke volume at different heart rates
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Figure 5: Stroke work changes to heart rate

4. Discussion

4.1 Study Findings
The study has investigated the initial use of a

fluid-structure interaction model to calculate the
stroke work done by the left ventricle by calculating
the pressures and blood flow volume through the
aortic valve. The hemodynamic data was acquired
from a healthy subject while exercising. Echo-
Doppler-derived data provided essential information
for simulation including aortic valve geometry and
pressure boundary conditions. To the authors'
knowledge, this would be the first time that exercise
protocol measurements and FSI technique have
been combined together to enable numerical
estimations of stroke work. All the curves of
systolic pressure changes to stroke volume at each
heart follow the same pattern at different heart rates
in terms of ascending and descending orders (Figure.
4). To all appearances, stroke volume variations
after heart rate 80, is followed by an abrupt increase.

The FSI model predicted stroke work through
exercise protocol to increase by 121% from 60 to
125 bpm, and then it did not increase much above
125 bpm. Our investigation provides initial insight
as the feasibility of gaining a variety of conditions
(e.g. changes due to exercise). The applicability of
the modeling and it's privileges such as low
computational time and less expensive as compared
to currently available clinical approaches , make it
usable to estimate the stroke work in patients. As

well as aforesaid benefits, our mathematical model
has the capability to analyses different aortic
geometries. Also this model let patients to predict
some situations which are not possible to clinically
measure. To be more exact, based on the fact that
the subject is human being applying such numerical
model let physicians to understand and investigate
probable conditions where patients could face in the
future or on different circumstances.

Etiology of diseased states would be moreover
assessable sine they may affect on shape and form
(geometry) waveform and quantity of blood
pressure (boundary conditions). On top of that, the
vast majority of clinical techniques and research are
not mechanical-based. Taking into consideration
that the nature of heart valve functions are mostly
mechanical-based, our discipline evidently steps
toward to investigate the heart performance as it is a
mechanical pump to a great extent.

4.2 Clinical Application and Reliability
Catheterization-Thermodilution is known as

the golden method for measuring cardiac function [5].
This is, however, an invasive technique. This has
been proved such strategies are associated with
potential perils including heart failure, death, and
even cardiac arrhythmia [5]. The FSI modeling can
offer clinical team information that is clinically
compatible with Catheterization-Thermodilution
and provide such data earlier and in a safer
approach than traditional methods. Noninvasive
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measurement of the hemodynamic parameters and
knowing the normal values for these parameters, the
hemodynamic status of each patient can be
represented as percent changes from the norm. This
can result in numerical modeling of the
hemodynamic status, and clinicians may be able to
more accurately react to the individual needs of the
patient with appropriate treatment. Furthermore,
numerical simulations are capable to precisely
estimate cardiac hemodynamics. This is mostly due
to the fact that it does not deal with inter- and intra-
observer validity variables which are mainly the
argument for performing ECG. This kind of
unevenness is contingent upon personal expertise
and the image capture ability of the user. Therefore,
the fundamental matter is to prove the credibility of
modeling methods for cardiac evaluations.
Moreover, clinical experiments performed on
animal subjects [12-18] to avoid any risks for human

subjects, can glorify the merits of numerical
approaches.

4.3 Comparison to the literature
Figure 6 performs stroke work changes to

mean arterial pressure (for the exercise protocol).
As it can be observed, slope of the results reported
by this paper (168.08 mmHg · ml/ml) and are
within the reported clinical data varied from 46.56
to 335.05 ml [1, 2, 4, 5 and 12]. The average slope of
clinical data is 191.42 mmHg·ml/ml. The reported
results of this paper is within12.2% with the
literature reported data. The differences could be
due to weight, sex, age and race of patients. It can
be concluded that the reported data from the
numerical model in this paper is in an acceptable
range of reported clinical data.

Figure 6: Fluid solid interaction and clinical stroke work changes to mean arterial pressure for the exercise
protocol

4.4 Limitations and Future Trends
The limitations of this numerical study and

future suggestions are listed as following:
1.Using two-dimensional rather than three-

dimensional geometry.
2.Applying linear, homogenous and isotropic

features for simplification of aortic valve's
mechanical properties.

3.Mechanical properties are based on
generalized information, and are not specific to the
patient.

4.Considering blood as a Newtonian and
incompressible fluid.

Despite model limitations, we fulfilled an
acceptable consistency with the general literature.

Undoubtedly, a three-dimensional model may
result in more precise predictions; however, it
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would also raising the processing time (that is less
than 15 minutes for the two-dimensional model).
This should hold shortcomings for clinical
applications.

5. Conclusion

We have presented a two-dimensional fluid-
structure interaction simulation of aortic valve
having the ability to predict stroke work from rest to
exercise stage. Derived regression for stroke work
changes versus mean arterial pressure showed the
averagely 15% difference between numerical and
clinical data. Thus, this model provides initial
insights as the potential for predicting stroke work
for a specific individual within a 15-minute
response time that matches with clinical data.
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