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Abstract 

 

An ECG (Electrocardiography) is a graphical representation of electrical behavior of heart and is 

measured by placing electrodes on specific locations of limbs and chest. The characteristics of these signals 

change during acquisition and transmission due to addition of noises of variable frequency and amplitude. 

These noises need to be removed for better clinical evaluation. In this paper, ECG signals of MIT-BIH 

database have been approximated through a series of steps, i.e., denoising using total variation, segmentation 

using Bottom Up approach and finally utilizing Chebyshev nodes for Lagrange interpolation method. This 

paper also explores the concept and  the benefit of second difference total variation over the first difference. 

The performance of the method is analyzed in terms of mean absolute deviation, root mean square deviation, 

percentage root mean square difference error, signal to noise ratio and cross correlation. The results obtained 

are found to be better than exiting techniques.    
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1. Introduction 

 

An ECG is an important tool for cardiac 

related treatments. The signal is acquired through 

16 conventional 12-lead ECG in which ten 

electrodes are placed on the patient’s limbs and 

chest. The resultant signal 
[1, 2]

 consists of waves 

viz., P, QRS, T and U of different shapes, 

amplitudes and frequencies which are shown in 

Figure 1.  

The characteristics of these signals are changed 

due to  power line interference (PLI), baseline drift, 

electrode contact noise, motion artifacts, muscle 

contraction, instrumentation noise etc
[3]

. Thus, it is 

necessary to reduce noises from ECG signals up to 

the extent where ECG retains diagnostic features 
[4]

. 
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Figure 1: A standard ECG signal with components waves and intervals on ECG grid

 

Since, noises introduced in ECG signals are of 

variable frequency and amplitude, significant noise 

removal cannot be achieved using a single filter. 

Traditional analog and digital filters were found to 

suppress ECG components near to 50 Hz frequency. 

Different types of infinite impulse response filters 

(IIR) and finite impulse response filters (FIR) with 

unacceptably long transient time were widely used 

to reduce PLI noises
 [5, 6, 7]

. Also determination of 

cut-off frequency for these filters was not so easy. 

Adaptive filters minimize the error between noisy 

ECG and a reference ECG with high transient time 

especially on the QRS complex 
[8]

. Other filters like 

least mean square (LMS), normalized least mean 

square (NLMS), transform domain least mean 

square (TDLMS) which suffered from numerical 

instability were also found in literature
 [9]

. Baseline 

wandering is reduced to significant level using 

linear and polynomial filtering. Low frequency 

noises were reduced using median filters in 
[10]

. 

Wavelet transform which allows analysis of signal 

in both time and frequency scales were also find 

application in ECG denoising. Various ECG filters 

using wavelet transform can be found in
 [11,12,13,14]

. 

Selection of threshold and decomposition level is 

still a challenge. Neural networks and genetic 

algorithms were also applied to reduce noise from 

ECG signals
 [15]

.  An effective ECG enhancement 

technique using total variation was proposed in 
[16]

. 

In this paper, noises present in ECG signals of MIT-

BIH are reduced through first difference and second 

difference total variation. The effect of 

regularization parameters on these algorithms is 

also explored. Characterization of these signals 

through Lagrange-Chebyshev interpolants is also 

presented and is found to be more useful. 

The rest part of the paper is organized as 

follows: in section 2, we present the total variation 

denoising technique based on first and second  

 

difference. In section 3, we give a brief introduction 

to characterization using Lagrange-Chebyshev 

interpolants. In section 4, we describe the method 

and discuss the results obtained. In the last section, 

we give the conclusions regarding the presented 

approach. 

 

2. Total variation denoising: First difference-

Second difference 

 

The total variation (TV) of N point discrete 

signal    ,        is defined as
 [17]

 

                     
                    (1) 

The TV of a signal measures sum of 

deviations, i.e., difference between consecutive 

samples of the signal. It is found that signals with 

high noise have high TV.  Therefore, reducing the 

TV of the signal removes unwanted detail and 

preserves important diagnostic features
 [18]

. 

Total variation denoising (TVD) assumes that 

the noisy data x(n) is of the form 

                                                 (2) 

where     an approximately piecewise 

constant signal and      is white Gaussian noise. 

TVD is defined as an optimization problem which 

minimizes the cost function (3) for reduction of 

noises and preservation of sharp edges 
[19]

. 

           
 

       
 

 
                 

   

λn=1N−1xn−x(n−1)                                    (3) 

The first term in (3) represents the mean square 

error between the observed and the reconstructed 

signal, and the second term refers to the total 

variation. The regularization parameter  λ controls 

the degree of smoothing with larger value for large 

noise. Increasing λ gives more weight to the TV of 

the signal
 [20]

. 

Since ECG signals are not piece-wise constant, 

TVD using first order differences has the tendency 
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to introduce a staircase effect leading to small flat 

regions in the denoised signal. While conventional 

TVD may be suitable for filtering piecewise 

constant signals, it is not usually the best denoising 

method for more general piecewise-smooth signals 
[21]

. For such signals, a higher-order difference can 

preferably be used instead of the first order 

differences. So, a variant of TVD is proposed in this 

paper which would reduces the staircase effect 

while retaining the quality of the reconstructed 

signal.  

Let the ECG signal x be represented as N point 

vector 

                                                (4) 

 

Expressing the TV of the signal x(n), in terms 

of second order differences as 

                          
   

{xn−1−x(n−2)}                                         (5) 
Therefore, the optimization problem reduces to 

           
 

       
 

 
                 

   

λ n=2N − 1xn − xn − 1 − {xn − 1 − x(n − 2)}                                                                      

(6)                                                                     

Our aim is to estimate      from x      by 

minimizing (6). Since l1 norm is not differentiable, 

we minimize the objective function using 

Majorization-Minimization (MM) algorithm. 

The MM method solves the optimization 

problem by replacing a complicated problem by a 

sequence of simpler problems. Convergence is 

guaranteed by requiring that the approximating 

functions majorize the original function at the 

current solution 
[22]

. If          ,   and   be real 

valued functions on    , then the function   

majorizes the function   at   if: 

(a)           for all x 

(b)           

While minimizing the objective function   
iteratively, let      be the current best minimizer at 

the     iteration. A majorizing function   is 

constructed that majorizes   at       If      

minimizes  , the procedure is terminated otherwise 

a new solution        is found by minimizing   , 

                                             (7) 

 

A new majorizing function is constructed at 

       , and the steps are repeated to produce a 

decreasing sequence of function values. In order to 

construct a majorizer for the objective function 

given by (6), the property of quadratic majorizers 

has been exploited. The function          has a 

quadratic majorizer at each    except at     . If  

       then the majorizer for      is given by 
[22]

 

                                   
 

     
   

 

 
                     (8) 

Therefore, instead of minimizing the cost 

function      directly, the Majorization approach 

solves a sequence of optimization problems,      , 

           where each function      , is a 

majorizer of     . Using (8) we can construct the 

majorizer for (6) as 

         
 

 
              

 

  λ  
              

    
          

                                                                      (9) 

Since common ECG contaminants are non-

stationary and temporally correlated, time-varying 

dynamic models are required for the generation of 

realistic noises. 

 

3. Characterization using Chebyshev- Lagrange 

interpolation 

 

The Chebyshev polynomials of first kind, 

degree n are defined 
[23]

 as: 

 

                                for       (10)                                 

The      degree Chebyshev polynomial has 

      zeros (nodes or points) in the interval [-1, 1], 

which can be calculated as: 

            
    

      
π  for                      (11) 

The Chebyshev polynomials are orthogonal in 

the interval        over the weight          

      
  

  . Other properties of Chebyshev 

polynomials can be found in 
[24]

. Chebyshev 

interpolation produces a sequence of polynomials 

     that converge uniformly to      over       [25]
. 

If      is a continuous function on        , the 

polynomial interpolation of degree   can be 

obtained by interpolating between the values of     

     at       significant points in the interval. Let 

     ,          be a set of       numbers 

representing the samples of ECG sequence vector of 

length   in         Then there exists a unique 
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polynomial   of degree       that interpolates 

these data, i.e.,            for each  . 

If the interpolating polynomial is 

                   
         

    
                                                                         (12) 

 We require that 

                
          

    

    
 =                                                               (13) 

In matrix form (15) can be rewritten as 
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      (14) 

In order for the system (14) to have a unique 

solution, the Vandermonde determinant on the 

extreme left should be non singular 
[26]

. The 

Vandermonde determinant equals the product of the 

terms (      ) for i > j, therefore the points 

      should be distinct for the determinant to be 

non zero. Setting the coefficients as the interpolated 

values      ;      , we can write the 

interpolating polynomial of degree   using 

Lagrange's formula[27,28]    as 

                              
  

                     (15) 

where   
   are (n + 1) Lagrange polynomials of 

degree     . 

         
      

    

     

 
                                   (16) 

If       is        times continuously 

differentiable in         then the interpolation error 

     is 
[29] 

 

           
 

   
       ξ      

   

xj,   ξ∈[−1, 1 ]                                               (17) 

Therefore, 

        
 

      
        

 
       

   ξ   
        ξ    

                                                                  (18) 

To minimize the upper bound for       , we 

can minimize the product        
 
    

If we are free to choose the interpolating points 

       within this interval, then the product 

       
 
    can be minimized. A better choice of 

interpolating points         to ensure uniform 

convergence is the set of zeros of the Chebyshev 

polynomial         , instead of equally spaced 

nodes 
[27]

. The following theorem gives an estimate 

of the error for the above case. 

Theorem 1: Assume that      is the Lagrange 

polynomial that interpolates f(x) at         . Also 

assume that these n + 1 interpolation points are the 

(n + 1) roots of the Chebyshev polynomial        , 

given by (11). Then             
             

 

        
   

   ξ  
        ξ                                

If the interpolation interval for the function f(x) 

is        , we transform the interval          
using 

                                 
            

 
              (20) 

This converts the interpolation problem for f(x) 

on [a, b] into interpolation problem for      
        in         . The Chebyshev points in the 

interval         are the roots of the Chebyshev 

polynomial       , i.e, 

                   
    

      
π               (21)  

The corresponding       interpolation points 

in the interval       using (21) are   now 

    
            

 
                           (22) 

The interpolation error now is given by 

             
 

        
 
   

 
 
   

   
   ξ   

        ξ             (23) 

where         is the Lagrange interpolating 

polynomial based on Chebyshev nodes. Delving 

deeper into the advantages of using Chebyshev 

interpolating nodes, we observe that Runge 

phenomenon does not occur with the effect that the 

error tends to decrease with the increasing degree of 

the Lagrange Chebyshev interpolating polynomial, 

whereas the same may not be true for equally 

spaced nodes. Alternatively, we can express the nth 

degree interpolating polynomial        as a sum of 

Chebyshev polynomials        ) 
[30]

. 

                    
 
                            (24) 

  

where the coefficients ck are defined as 

   
 

   
      

 
                        ( 25)                

where 

                
      π

      
 j=0,…,n                  (26) 
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Let 

                                        θ θ    π π      (27) 

then, 

   
 

   
   θ

 
       θ

 
 

 

   

            

                                                                     (28)    

with 

                                    θ
 
 

      π

      
                        (29) 

Replacing       θ  by a periodic 

function     θ , 

    
 

   
   θ

 
 

 

   

     θ
 
             

                                                                     (30) 

Thus    is discrete approximation to the 

Fourier series coefficients 

       
  

 

π
   θ       θ  θ
π

 π
                   (31) 

Applying the trapezoidal rule approximation 

          
  

 

π

π

   
   

      π

      
     

      π

      
    

         (32) 

which is same as (30) for   . 

Thus (32) is equivalent to the discrete Fourier 

transform of the transformed function   θ  

     θ . Chebyshev interpolation can effectively be 

considered as the partial sum of the approximate 

Chebyshev series expansion obtained by replacing 

the Fourier transform   
 by discrete Fourier 

transform    . 

 

4. Methods and Results 

 

Presence of noises degrade the signal quality 

and changes the morphology of the ECG signal, 

thus establishing noise removal is an essential step 

in ECG preprocessing for better performance, 

analysis and diagnosis. In this paper, first 

difference, second difference and Lagrange- 

Chebyshev interpolants are used for noise removal 

from ECG signals. To test and to compare the 

performance of the algorithms, we perform all the 

algorithms in Matlab environment. The signals used 

for analysis are taken from MIT-BIH
 [31]

 

arrhythmia database. Each record consists of two 

channels of signals, which are of 10 seconds 

duration with 3600 samples, sampled at a rate of 

360 Hz with 11 bits per sample of resolution. 

 

4.1 Computational Performance 

Let x(n) be the original signal and y(n) be 

reconstructed ECG signal of length N. The error 

between the signals is evaluated as: 

               
The performance of algorithms with respect to 

the signals is evaluated in terms of following 

parameters: 

 

4.1.1 Mean Absolute Deviation 

Mean absolute deviation (MAD) provides 

average of absolute deviation of reconstructed 

signal from the original signal. 

    
 

 
       

 

   

 

 

4.1.2 Root Mean Square Difference 

The root-mean-square difference (RMSD) 

measures mean of the differences between 

reconstructed and the original signal
 [32]

. The RMSD 

is more useful when large errors are particularly 

undesirable 

     
         

   

 
 

 

4.1.3 Percentage Root-Mean-Square Difference 

The percentage root mean square difference 
[32]

 

(PRD) is calculated by: 

     
         

   

            
   

 

where    is the mean of the original signal. The 

PRD is chosen to remove the baseline or to 

eliminate the dc level which is added to ECG 

signals for storage purpose. 

 

4.1.4 Signal to Noise Ratio 

Signal-to-noise ratio (SNR) is defined as the 

ratio of signal power to the noise power corrupting 

the signal
 [32]

. A ratio higher than 1:1 indicates more 

signal than noise. 
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4.1.5 Cross Correlation Coefficients 

A measure that determines the degree to which 

two variable's signals is associated. Value near to 1 

indicates close resemblance between original and 

reconstructed signal. 

 

   
               

                         
 

The higher SNR, CC value and lower MAD, 

RMSD and PRD values means better signal 

restoration performance. 

 

4.2 TVD 1D and TVD 2D ECG signal 

characterization 

The MM approach to minimize the function 

     can be summarized as
 [18]

: 

1. Store the noisy ECG signal as data and set the 

number of data points. 

2. Set regularization parameter  λ. 

3. Set number of iterations as 30. 

4. Set       . Initialize      as the original signal. 

5. Choose       using (9) such that 

(a)                         

(b)              

6. Set        as the minimizer of      . 

Initially we started by taking   λ        . 

Results were numerically good but visually poor. 

So, the value of  λ   is increased slowly and 

performance parameters were noted. The Table 1 

shows performance matrices for different values 

of  λ wherein bold, italic and red parameters 

represent result of second order TVD. From the 

Table 1, it is observed that at lower value of  λ , 

performance TVD 1D is better than TVD 2D 

whereas at higher values, TVD 2D overtakes TVD 

1D.
Table 1: Relation between first order and second order total variation denoising with respect to   

  
x10

(-3)
 

MAD 

x10
(-3)

 

MAD 

x10
(-3)

 

RMSD 

x10
(-2)

 

RMSD 

x10
(-2)

 

PRD 

 

PRD SNR SNR CC CC 

1 2 4 12 19 0.67 1.14 50.21 45.60 1.000 0.9999 

5 10 14 42 51 2.59 3.13 38.47 36.82 0.9997 0.9995 

10 20 22 66 74 4.04 4.52 34.61 33.64 0.9992 0.9990 

50 65 54 22 133 7.53 8.17 29.20 28.49 0.9972 0.9967 

100 82 22 147 74 9.07 4.52 27.59 33.64 0.9962 0.9990 

 

So, it can be concluded that better results can 

be achieved for TVD 2D at higher value of   .  

Results of both TVD 1D and TVD 2D at   =0.01 

are indicated in Table 2 and 3 respectively. 
 

Table 2: Quality assessment matrix of TVD 1D  at         

Signal MAD RMSD PRD SNR CC 

100 0.0200 0.6145 3.6100 35.4131 0.9994 

104 0.0200 0.5294 1.9154 36.7611 0.9998 

108 0.0200 0.6568 4.0377 34.6139 0.9992 

112 0.0200 0.4667 2.2984 45.8739 0.9997 

115 0.0200 0.5075 1.7069 40.9574 0.9999 

117 0.0200 0.5170 2.2271 44.5854 0.9998 

122 0.0200 0.6214 1.7791 43.1285 0.9998 

201 0.0197 0.5116 2.5891 34.4319 0.9997 

205 0.0200 0.4808 2.6060 38.6971 0.9997 

207 0.0200 0.6380 2.1051 35.2116 0.9998 

214 0.0200 0.6309 1.3193 37.7987 0.9999 

220 0.0200 0.4540 1.4573 43.3975 0.9999 
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Table 3: Quality assessment matrix of TVD 2D  at         

Signal MAD RMSD PRD SNR CC 

100 0.0207 0,6755 3.9683 34.5911 0.9992 

104 0.0211 0.6985 2.5274 34.3528 0.9997 

108 0.0222 0.7352 4.5193 33.6351 0.9990 

112 0.0171 0.4616 2.2735 45.9685 0.9997 

115 0.0167 0.4879 1.6410 41.2991 0.9999 

117 0.0202 0.5522 2.3786 44.0140 0.9997 

122 0.0248 0.6920 1.9812 42.1940 0.9998 

201 0.0175 0.6027 3.0501 33.0086 0.9995 

205 0.0181 0.4245 2.3008 39.7792 0.9997 

207 0,0233 0.7586 2.5033 33.7068 0.9997 

214 0.0212 0.7645 1.5988 36.1302 0.9999 

220 0.0198 0.4778 1.5334 42.9549 0.9999 

 

More or less the performance parameters of 

TVD 1D and TVD 2D are same. However, second 

difference is more suitable as staircase effect is 

significantly reduced which can be seen in the 

Figures 2-3. 

 
 
Figure 2: Original and TVD 1D reconstructed record 

number 214 

 
 
Figure 3: Original and TVD 2D reconstructed record 

number 214 
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4.3 ECG characterization through Lagrange-

Chebyshev interpolation 

Here we need to construct an interpolating 

polynomial        using (24) with the   ECG 

samples using the Chebyshev nodes. Since an ECG 

signal sampled value may not be available at all the 

Chebyshev nodes, we derive these values by linear 

interpolation using adjacent ECG sampled values. 

We continue increasing the order till our error 

criterion is met. This approximation technique can 

be summarized as: 

1. Fix the order   and the tolerance ξ      for 

the Lagrange-Chebyshev polynomial 

approximation. 

2. Transform the Chebyshev nodes on the domain 

[a, b] and calculate the zeros i.e., the Chebyshev 

nodes   using (22). 

3. Find the function value        by linear 

interpolation using the two adjacent samples 

around   . 

4. Construct interpolating polynomial         

using (24). 

5. Calculate error                       . 

6. If            then           and go to step 

2. 

In order to denoise the whole signals, high 

order polynomials were required which increases 

computation time. Also errors for this approach 

were very high. So, to reduce the computation time 

and error, we segmented the whole signal into 

suitable (till optimum results are achieved) number 

of segments. This is done by implementing Bottom 

up approach. The Bottom up algorithm, also called 

as iterative merge which begins by dividing the 

original time series data of length   , into a large 

number of segments and is consequently merged 

into bigger segments until stopping criteria is met 
[33]

. So, segmentation is done before interpolation. 

The signal reconstruction stage consists of 

sequentially appending the segments to obtain the 

complete reconstructed signal which does not 

require any selection of significant coefficients. 

Here the 10 seconds (3600 samples) of original 

signal from MIT-BIH database is divided into 100 

segments and then the individual segments are 

interpolated by 50th order Lagrange-Chebyshev 

interpolants. Table 4 shows the results of Lagrange-

Chebyshev interpolation for same set of signals. 
 

Table 4: Quality assessment matrics for Lagrange-Chebyshev interpolation 

Signal MAD 

x10
-6

 

RMSD 

x10
-5

 

PRD SNR CC 

100 1.83 6.16 0.0019 44.83 0.9977 

104 2.89 9.55 0.0017 43.06 0.9982 

108 0.15 1.12 1.7153 x10
-4

 66.91 1.0000 

112 0.80 2.87 4.6281 x10
-4

 55.97 0.9999 

115 1.81 5.25 0.0030 50.34 0.9945 

117 2.59 13.00 0.0014 43.65 0.9987 

122 0.39 11.32 0.0023 47.61 0.9968 

201 0.84 3.39 9.7624 x10
-4

 44.81 0.9994 

205 0.70 3.83 1.1696 x10
-4

 53.05 1.0000 

207 12.01 24.68 0.0139 23.17 0.8837 

214 5.70 16.91 0.0090 32.29 0.9535 

220 3.93 14.48 0.0031 41.46 0.9941 

 

Although the number of segments has been 

kept same for all the signals, all the segments 

cannot be approximated by a single polynomial 

because they are of unequal sample lengths due to 

the variable shape of ECG within and across 

patients. Here our interest is to denoise the signal  

 

while retaining its characteristics. So, number of 

segments is not so important. 

The performance matrices for the total 

variation are more or less similar. RMSD value is of 

order      whereas MAD values are upto      . 

Maximum value of PRD is 4 which can be 
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considered to be within diagnostic limits. SNR and 

CC values are also high indicating high level of 

noise suppression and high resemblance of timing 

pattern of reconstructed signal with the original 

signal. So, both the TVD 1D and TVD 2D methods 

are suitable for noise suppression of ECG signals. 

However, visually better results are obtained for 

TVD 2D. As compared to these techniques, results 

of Lagrange- Chebyshev are much better. Errors are 

significantly reduced up to      . Signal contents 

are also enhanced to high level as compared to 

noise level. CC values are found to be less than the 

methods which can be improved either by 

increasing number of segments or by increasing 

order of the polynomial. Original and Lagrange-

Chebyshev approximated record 214 is presented in 

Figure 4.  Thus the proposed method will be more 

suitable for ECG denoising. 

 

 

 
Figure 5: Original and Lagrange –Chebyshev reconstructed record number 214

 

5. Conclusion  

 

ECG signal records voltage potentials of 

cardiac activity. These signals are often 

contaminated by various types of noises. In this 

paper, ECG signals from MIT-BIH database were 

denoised using TVD 1D, 2D and Lagrange- 

Chebyshev interpolation. It is concluded that both 

methods of TVD are suitable for ECG denoising but 

TVD 2D results are visually better. Also 

regularization parameter which controls degree of 

denoising plays an important role. Same set of 

signals are denoised using Lagrange- Chebyshev 

interpolation method of high order and results 

obtained are comparable. Results are further 

improved by segmentating ECG signals using 

Bottom up approach. The results obtained are 

diagnostically acceptable and are found to be 

superior to those reported in the existing literature.  

 

 

Moreover, it was observed that the segmentation 

helps in considerable reduction of computation 

time.  

The accuracy can be further improved by breaking 

the complete signal into more number of segments 

but that could be at the cost of CR and computation  

time. A combination of TVD 1D-2D may provide 

better results. 
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