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Abstract 
 

 Biological systems contain many components and these components are intricately linked. 

Understanding the behavior of the system in medical science facilitates the recognition and treatment of 

diseases. Although diseases have long been studied but the exact mechanism of many of them is not still well 

understood. Knowing the dynamics of a disease usually needs to understand the dynamics of the cell. By 

identifying and modeling the dynamics of such systems, diseases can be controlled. An efficient method for 

systems analysis is observability and controllability. Observability is defined to be the state variables based 

on the inputs, outputs and their time derivatives and these measured values for the variables are unique 

without having to know the exact amount of the initial conditions of the system. For observing states of the 

system, the system must have observability property and for arbitrary controlling states of the system, the 

system must have controllability property. In this paper observability and controllability of a typical 

ventricular muscle model are investigated. This model has nonlinear dynamics. observability of nonlinear 

systems obtain with Lie derivative. With the system state space and by calculation of Lie derivative, O 

matrix will be calculated. After these calculations, the nonlinear system is observable if the O matrix has full 

rank. Controllability of nonlinear systems obtains Lie bracket. With the system state space, after calculation 

of Lie bracket, C matrix will be calculated. According to calculations, the nonlinear system is controllable if 

the C matrix is full rank. 
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1.  Introduction 

 

 Action potential (AP) plays an important role 

in the body's electrical activity. AP is depended on 

active transport of sodium and potassium ions 

across cell membranes. The effect of various drugs 

on AP production process is considered an 

important topic for research [1]. 

Hodgkin- Huxley modeled entry and exit of these 

ions through the membrane of cell as a 

mathematical model. Their model is one of the 
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most important cell models. Cell models can be 

approximated to minimal cell models that the 

combination of an amplifier variable and a 

resonant variable will result a minimal model. 

Minimal models can lead to understanding of 

many complex electrophysiological models [2]. 

To understand what happens inside the cell, we 

need to observe the system states. Sometimes 

these cases are not directly measurable. In these 

case it requires to observe the states with observer 

whether this system should be observable. In 

addition, controlling the system states needs 

system to be controllable. Therefore, because 

observability and controllability of dynamic 

systems are important functional properties, in this 

paper we check observability and controllability of 

a ventricular muscle model. Since the model has 

nonlinear dynamics, we used nonlinear approach 

to analyze the properties of the system. 

Hodgkin and Huxley estimated three mainstream 

axons: voltage gated Persistent potassium current 

with four activation gate, voltage gated transient 

sodium current activation with three activation 

gate and one inactivation gate and ohmic leakage 

current that is usually caused by calcium currents 

the Complete set of Hodgkin-Huxley equations 

which contains four variables h, m, n, v is as 

follows [6]: 
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Minimal cell models 

 To obtain a minimal model of the above 

model, the state variables are reduced with special 

techniques. These models named as minimal or 

irreducible for spiking. With this definition, any 

complex model is combination of minimal 

models, Otherwise can be reduced as a new 

minimal model. For example, Hodgkin–Huxley 

model, which is mentioned above, is not 

minimal. This model has three current: leakages, 

transient sodium (variable gated m and h) and 

persistent potassium (variable gated n). This 

model would be approximated six minimal models 

which are summarized in Figure 1. The 

combination of an amplifier variable gated 

(positive feedback) and a resonant variable gated 

(negative feedback) with a leakage current lead to 

a minimal model. In addition, none of the 

variables are not able to produce spike solely, but 

the two variables are able to generate spike [2]. 

 

 
Figure 1. Any combination of one amplifying and one 

resonant gating variables results in a spiking model [2]. 

 

 The amplifying gating variable is the 

activation variable m for voltage gated inward 

current or inactivation variable h for voltage gated 

outward current. These variables amplify voltage 

changes via a positive feedback loop. Indeed, a 

small depolarization increases m and decreases h, 

which in turn increase inward and decrease 

outward currents and produce more 

depolarization. Similarly, a small 

hyperpolarization decreases m and increases h, 

resulting in less inward and more outward current, 

and hence in more hyperpolarization. 

 The resonant gating variable is the 

inactivation variable h for an inward current or 

activation variable n for an outward current. These 

variables resist voltage changes via negative 
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feedback loop. A small depolarization decreases h 

and increases n, which in turn decrease inward and 

increase outward currents and produce a net 

outward current that resists the depolarization. 

Similarly, a small hyperpolarization produces 

inward current and possibly rebound 

depolarization [2]. 

 Two amplifying and two resonant gating 

variables produce four different combinations 

depicted in Fig 1. However, the number of 

minimal models is not four, but six. The additional 

models arise due to the fact that a pair of gating 

variables may describe activation/inactivation 

properties of the same current or of two different 

currents. 

 One of the most fundamental models in 

computational neuroscience is the INa,p+Ik model 

consisting of a fast     current and a relatively 

slower   current. 
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 A reasonable assumption based on 

experimental observations is that     gating 

variable m(t) is much faster than the voltage 

variable V(t), so that m approaches the asymptotic 

value       instantaneously. In this case we can 

substitute         in the voltage equation and 

reduce the three-dimensional system above to a 

planar system [2]. 

 

 

 
 

 

 This model is suitable to describe the 

ventricular muscle but only in order to model the 

action potential of ventricular muscle cell, 

parameters must be adjusted. There are several 

ways to adjust the model parameters. The purpose 

of this paper is not to find these parameters of 

model so we examine properties of model in 

parametric form. 

  

2. Methods 

 

2.1 Observability for nonlinear systems 

 In this paper to evaluate observability of 

nonlinear systems we used method that is based on 

the Lie derivative. In this way the relationship 

between input and output and system state 

equations are considered as follows [4]: 
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 Both states    and    are distinguishable if 

there is an input function u: 
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The Lie derivative of h with respect to f is [5]: 
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By definition   hhL f 0  

We can also define higher-order Lie derivatives: 
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2.2 Controllability for nonlinear models 

 We use Lie bracket method for controllability 

for nonlinear models. 

 Consider two vector fields f(x) and g(x) in 

  . Then the Lie bracket operation generates a 

new vector field [3]: 
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Also, higher order Lie brackets can be defined: 
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Assume we have an affine system [3]: 

  guxfx                             (2) 

is locally accessible about    if the accessibility 

distribution C spans n space, where n is the rank 

of x and C is defined by:[4] 

    gadgadgC k

ff ,,,,, 1   

if f(x)=0 and C has rank n, then the system is 

controllable. 

 

3. Results 

 

3.1 Observability of ventricular muscle model 

 First we created l matrix for minimal model, 

then the O matrix is obtained and finally O matrix 

order is calculated. If O matrix is full rank the 

system is observable. In continue both O matrix 

calculation of ventricular muscle model and detail 

of this calculation will be reviewed. Equation (1) 

describes the ventricular muscle cell model. Using 

these equations    and    are as follows: 
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Here I=0. 

After calculating the Lie derivative, l matrix is 

obtained as follows: 

 TfVl 1  

And 

 

 
 

  ngEV
V

Vm
gVmggw

EVgw
O

KNaNaNaL

KK






















01

 

For the observable system, O must be a complete 

order. So: 
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With this condition system is observable. 

 

3.2 Controllability of ventricular muscle model  

 We first calculate G matrix of ventricular 

muscle model and then we calculate the rank of 

this matrix. For some states, the matrix G is not 

full rank. So we have estimated the state that the G 

matrix is full rank, and then the system is 

controllable. 

 Afterwards the calculation details of G matrix 

of Ventricular muscle model is shown. Equation 

(1) describes the ventricular muscle cell model. As 

seen above, state space of the ventricular muscle 

model can be expressed as follows: 

              

    

State variables of these systems are V and n. 
     

     

Comparing the desired state space model and the 

relation (2) f (x) and g (x) matrices are obtained. 
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 This system is accessible if C matrix is full 

rank, it means C determinant should be against the 

zero. So: 
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Accessibility Condition of ventricular muscle 

model: 
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Since accessibility of the systems states is the 

subset of their controllability, we first evaluate the 

accessibility properties of ventricular muscle 

model. If this model is not accessible, it is 

uncontrollable and if this model is accessible its 

controllability will be investigated. Because lack 

of full accessibility of the ventricular muscle 

model, it's not controllable. 

 

4. Conclusion 

 

 Using the results the ventricular muscle cell 

model is observable except on one line in state 

plane. By this condition we can consider this 

minimal model observable. Also, this model is 

accessible except on one curve in state plane. By 

this condition, because the accessibility is a subset 

of controllability we can consider this minimal 

model uncontrollable. Here we analyzed the 

observability and controllability properties of 

ventricular muscle cell model. As a result we can 

use observers like Kalman Filter, in this case 

Extended Kalman Filter, to observe the states of 

this nonlinear system and by using a state 

feedback we can control the behavior of a cell [7]. 
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