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Abstract 

 
 Childhood or pediatric acute precursor B cell lymphoblastic leukemia (B-ALL) is the most prevalent 

hematological malignancy in children. Previous studies have revealed relationships between genetic lesions and the 

disease. In this review, I discuss our current understanding of the genetic lesions and molecular events in childhood B-

ALL and the related therapeutic implications. 
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1. Introduction 
 

 Acute lymphoblastic leukemia (ALL), also 

called acute lymphocytic leukemia or acute 

lymphoid leukemia, is the most common 

malignancy in children. Approximately 25% of 

all pediatric cancers are ALL [1]. With recent 

advances in therapy, the five-year survival rate of 

children with ALL has greatly been improved to 

more than 85%, and recurrences are very rare [2]. 

The World Health Organization defines the 

diagnostic criteria for ALL as a precursor B cell 

acute lymphoblastic leukemia/lymphoma (B-

ALL/B-LBL) or a T cell acute lymphoblastic 

leukemia/lymphoma (T-ALL/T-LBL). During the 

process of B and T cell differentiation, any 

genetic insult that blocks precursor B or T cell 

differentiation and drives their aberrant 

proliferation and survival may cause ALL. Of all 

the ALL cases, B-ALL comprises approximately 

80-85%, while the remainder are T-ALL [3]. B-
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ALL is an aggressive malignancy of small- to 

medium-size precursor B cells. 

 Although the primary genetic lesions that 

cause the vast majority of ALL are still 

unknown, a number of genetic abnormalities 

have been found in approximately 75% of 

childhood ALL cases, including chromosome 

number alterations, chromosome translocations 

that deregulate gene expression or create novel 

fusion genes, and specific gene mutations. 

Genetic alterations that are frequently detected 

in childhood B-ALL include translocations (such 

as t(12;21) [ETV6/RUNX1], t(9;22) 

[BCR/ABL1], t(1;19) [TCF3/PBX1], and MLL-

involved t(4;11), t(9;11), t(11;19)), and 

mutations of genes involved in tumorigenesis or 

tumor suppression, apoptosis, and cell cycle 

regulation (such as CRLF2, IKZF1, TP53, and 

FLT3). Array and next generation sequencing 

technologies have advanced the classification of 

childhood ALL and elucidated new genetic 

targets involved in tumorigenesis and relapse [4-

10]. Despite these advances, about 25% of ALL 

cases are not genetically classified [11]. 

 Overall, genetic lesions initiate ALL or 

affect prognosis by altering expression of key 

transcription factors, chromatin-modifying 

factors, or oncogenesis signaling pathways, 

including the overexpression of oncogenes or the 

deletions of tumor suppressor genes. Here, I 

review the spectrum of genetic mechanisms of 

ALL progression and prognosis. 

 

2. Translocations 

 

2.1 ETV6-RUNX1 (t(12;21) 

 A translocation between chromosome 12 

and 21, which fuses ETV6 gene on chromosome 

12 to RUNX1 gene on chromosome 21, produces 

a new fusion protein, ETV6/RUNX1, formerly 

known as TEL/AML1 (Table 1). The t(12;21) 

translocation is detected in 20% to 25% of cases 

of precursor B-ALL but is rarely observed in T-

ALL [12]. The t(12;21) occurs most commonly 

in children aged 2 to 9 years [13, 14], and 

Caucasian children have a higher incidence rate 

than Hispanic children [15]. Patients with the 

ETV6/RUNX1 translocation are known to have a 

higher frequency of late relapses when compared 

to other forms of B-ALL [16, 17]. These 

relapsed patients have a better outcome than 

other relapsed leukemia patients [18, 19]. 

 The ETV6-RUNX1 chimeric protein formed 

by the translocation event is comprised of the N-

terminal portion of ETV6 protein and almost the 

entire RUNX1 protein. The fusion effectively 

enhances RUNX1 transcriptional repressor 

function [20]. Based on the studies of 

ETV6/RUNX1 leukemogenic model, expression 

of the fusion protein alone is not sufficient to 

cause the disease [21, 22]. Additional secondary 

genetic alterations are required to trigger disease 

initiation and progression [23]. Gene profiling 

analysis revealed that ETV6-RUNX1 expression 

contributes to B-ALL by repressing gene 

expression [24]. 

 Previous studies showed that RUNX1 can 

repress transcription of its target genes through 

recruitment of mSin3A/HDAC complexes [20]. 

The fusion with ETV6 converts RUNX1 to an 

HDAC-dependent, constitutive repressor and 

contributes to leukemogenesis by altering the 

expression pattern of RUNX1 target genes [20]. 

Target genes for those that are repressed by 

RUNX1 are distinct from those that are activated 

by RUNX1. RUNX1 needs to dimerize with 

CBF a non-DNA-binding regulatory protein, to 

effectively bind to its DNA target sites [21, 25, 

26]. 

 Although the role the ETV6/RUNX1 fusion 

protein plays in leukemogenesis is not fully 

understood, many possible mechanisms have 

been suggested. For example, siRNA- or shRNA-

mediated knockdown studies of the fusion gene 

indicate that ETV6/RUNX1 expression supports 

the survival of leukemia cells by up-regulating 

heat shock proteins, survivin, and MDM2 and by 

activating the PI3K/AKT/mTOR signaling 

pathway [27-29]. 

 

2.2 Philadelphia chromosome 

 The Philadelphia chromosome (Ph) results 

from the translocation t(9;22). The BCR/ABL1 

fusion gene that is formed encodes an 

oncoprotein with constitutive tyrosine kinase 

activity. The Ph chromosome is present in 

approximately 10-15% of children ALL [11, 30]. 
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It is more commonly detected in older children with precursor B-ALL [11]. 

 

Table 1: Genetic alterations in childhood B-ALL, prognosis, and involved signaling pathways   

Genetic 

alterations 

Common 

genes  
Prognosis Signaling pathways involved References 

Translocations 

t(12;21)(p13;q22) ETV6/RUNX1 Good 
mSin3A/HDAC complexes; CBF; 

PI3K/AKT/mTOR signaling; represses 

RUX1 target genes 

18;19;22;23 

t(9;22)(q34;q11) BCR/ABL1 Poor 
RAS; RAC; RAF-1;PI3k; BCL-2;  NF-

kB; JAK/STATs 

41,42, 

43,44,45,46 

t(4;11)(q21;q23) MLL/AF4 

Poor 
activating Hox genes; down-regulating 

CDKN1B; up-regulating FLT3; 

transcription elongation 

59;60;61;62 t(9;11)(p22;q23) MLL/MLLT3 

t(11;19)(q23;p13) MLL/ENL 

t(1;19)(q23;p13) TCF3/PBX1 Intermediate 

transcription factors; pre-BCR 

signaling; JAK2 and TP53 alterations; 

deletions of IKZF1 

65;67;68;69 

Genes alterations  

CRLF2, JAK2, 

and IKZF1 

alterations 

CRLF2; 

JAK2, IKZF1 

Poor 
overexpression of CRLF2; mutations of 

JAK2; deletions of IKZF1 

3;70;71;73; 

75-80 

TP53 alterations 
TP53 

Poor 
TP53 mutations, deletion, or copy 

number alterations 
88 

PAX5 deletion or 

rearrangement PAX5 
unknown 

co-incidentally with ETV6 translocation 

and JAK2 mutations 
89-91 

Ph-like ALL CRLF2; 

JAK2, IKZF1 

Poor 

overexpression of CRLF2; mutations of 

JAK2; deletions of 

IKZF1;EBF1/PDGFRB signaling 

8;27;28;     

72-74;84; 

85 

Chromosome alterations 

Down sydrome 

(including 

iCAMP21) 

RUNX1;    

miR-802 
Poor 

overexpression of CRLF2; mutations of 

JAK2; deletions of 

IKZF1;RB1;CDKN2A;miR-802;RUNX1 

signaling 

  

High 

hyperdiploidy 
  Good   

105-107; 

109113 

Hyperdiploidy (including near 

hyperdiploidy, low 

hyperdiploidy) 

Poor 
RTK signaling; RAS signaling; IKZF3; 

TP53, RB1 and IKZF2 alterations 
116 

 

 

 According to previous studies, both the BCR 

and ABL1 portions in the BCR/ABL1 protein are 

essential for its signaling activity and the 

neoplastic transformation of cells. The extreme 

N-terminal portion of BCR encodes a coiled-coil 

oligomerization domain, which promotes 

BCR/ABL1 activation and is indirectly required 

for BCR/ABL1 cytoskeletal localization [31]. 
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The C-terminal kinase portion of BCR binds to 

the ABL SH2 domain in a phosphotyrosine-

independent manner [32]. This interaction is 

proposed to release the ABL kinase activity from 

negative regulation within BCR/ABL1. The 

tyrosine phosphorylation of BCR Tyr177 is 

required for BCR/ABL1 signal transduction 

pathways [33, 34]. For example, deletion of the 

BCR coiled-coil domain or mutation of Y177 to 

phenylalanine (Y177F) abolishes the BCR/ABL1 

protein’s capability to cause leukemia in mouse 

models [35]. These findings indicate that the full 

function of the coiled-coil region within BCR is 

required for BCR/ABL1 to cause leukemia. The 

phosphoserine-threonine-rich sequences between 

amino acids 192-242 and 298-413 in BCR are 

also essential for the oncogenic activation of 

BCR/ABL1 [32]. ABL1 tyrosine kinase activity 

is tightly regulated under physiological 

conditions [36]. The K1172 site in the ABL1 

SH1 domain is essential for both of ABL1 and 

BCR/ABL1 kinase activity. Mutation of K1172 

causes BCR/ABL1 to lose its kinase activity and 

most signal transduction functions [37]. Deletions 

of the SH2 domain has been shown to reduce the 

capability of BCR/ABL1 to transform fibroblasts 

[38]. The SH3 domain appears to play an 

inhibitory function.  It is thought to bind to the 

proline-rich region at the center of ABL1 and 

cause a conformational change that leads to 

inhibition of its interaction with its substrates 

[39-41]. Syp83 and PTP1B form protein 

complexes with BCR/ABL1 and inhibit its 

phosphorylation [42]. Overexpression of PTP1B 

can impair BCR/ABL1 transformation activity in 

fibroblasts [43].  

 BCR/ABL1 expression triggers malignant 

transformation by altering target cell adhesion to 

stromal cells and extracellular matrix [44], 

constitutively activating mitogenic signaling [33], 

and reducing cell apoptosis [45]. These 

phenotypes are associated with enhanced 

expression and activation of many effectors, 

including RAS [46], RAC [46], RAF-1 [47], 

PI3K [48], BCL-2 [49], NF- [50], and STATs 

[51].  

 SRC family kinases play critical roles in Ph
+
 

B-ALL. BCR/ABL1 activates SRC family 

kinases by its kinase-independent activity [52]. 

Previous studies showed that in the absence of 

three members of SRC kinases (Hck, Lyn and 

Fgr), BCR/ABL1 could not sufficiently induce B-

ALL [53]. Inhibition of SRC family kinases and 

BCR/ABL1 activities with dasatinib (a dual 

inhibitor of BCR/ABL1 and SRC family kinases) 

achieved therapeutic effect on Ph
+
 B-ALL in a 

mouse model [52, 53]. Although Src family 

kinases play essential roles in BCR/ABL1 

oncogenic activities on B-ALL, they alone are 

insufficient to transform B-lymphoid cells [54]. 

Historically, the Ph chromosome t(9;22) was 

associated with an extremely poor prognosis. 

Inhibitors of the kinase activity of BCR/ABL1 

and SRC family members are effective in 

patients with Ph
+
 B-ALL [55].  

 

2.3 MLL translocations 

 Chromosome translocations involving the 

11q23 region that contain the mixed lineage 

leukemia (MLL) gene are associated with 

approximately 8% of ALL cases [56]. These 

translocations include t(4;11), t(9;11), and 

t(11;19). ALL involving MLL gene 

rearrangement is generally associated with a 

high frequency of treatment-failure risk [57-60]. 

The t(11;19) translocation involving MLL and 

MLLT1/ENL is detected in both early B-ALL 

and T-ALL [61]. Patients with MLL gene 

rearrangement often have poor prognoses [61]. 

Interestingly, patients with deletions of the MLL 

gene have not been shown to have an adverse 

prognosis [62]. 

 MLL is homologous to the trithorax gene of 

Drosophilia melenogaster and functions as a 

transcription factor and a DNA 

methytransferase. MLL is involved in 

translocations with >50 different genes [63, 64]. 

All the translocations involving the MLL gene 

affect the gene expression of the fusion genes 

during MLL, and this promotes leukemogenesis. 

The translocation of t(4;11) also deregulates the 

expression of the ALL fused gene on 

chromosome 4 (AF4), which is detected in 50–

70% of infant leukemias. AF4 protein contains 

nuclear localization and guanosine triphosphate 

binding domains. MLL-AF4 fusion protein 

aberrantly activates HOX genes and contributes 

to leukemogenesis [65]. MLL-AF4 down-
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regulates CDKN1B at its transcriptional level by 

binding the promoter region. This caused a 

reduction in the CDKN1B (p27kip1) protein 

level in an in vivo model [66]. Patients with MLL 

rearrangement also exhibit elevated expression 

of FMS-like tyrosine kinase 3 (FLT3) gene [67]. 

The t(11;19) translocation leads to the fusion of 

the MLL gene to 1/eleven-nineteen-leukemia 

(MLLT1/ENL). MLLT1/ENL is a part of the 

histone H3 Lys79 methyltransferase disruptor of 

telomeric silencing-like (Dot1L) complex, which 

plays a role in transcription elongation [68]. 

MLL-MLLT1 fusion protein aberrantly regulates 

the canonical Wnt-signaling pathway and 

contributes to childhood ALL [68]. 

 

2.4 TCF3/PBX1 translocation 

 The t(1;19) translocation is found in 

approximately 5% of childhood ALL cases. The 

t(1;19) translocation leads to the fusion of the 

TCF3 gene on chromosome 19 to PBX1 gene on 

chromosome 1 [69, 70]. The t(1;19) 

translocation is primarily associated with pre-B 

ALL [60]. The TCF3/PBX1 [t(1;19)(q23;p13)] 

fusion is found in about 2-5% of cases of 

childhood ALL [71]. The t(1;19) translocation 

had been associated with inferior outcome in the 

context of antimetabolite-based therapy [72]. 

 The fusion protein is comprised of the 

transactivation domains of TCF3 and a DNA 

binding domain of the homeobox protein PBX1. 

TCF3 encodes E12 and E47 transcription 

factors, which are required for early lymphoid 

development. The translocation causes E12 and 

E47 protein levels to be reduced, and PBX1 to 

be converted into a transactivating factor [71, 

73]. TCF3/PBX1 functions as a potent oncogene. 

Gene profiling data showed that pre-BCR 

signaling genes are overexpressed in TCF3-

PBX1 positive B-ALL but not other cytogenetic 

subtypes B-ALL [74]. Mutations in the JAK2 

and TP53 genes, as well as deletions of IKZF1 

gene, are also commonly observed in relapsed 

patients with TCF3-PBX1 [75]. 

 

3. Cytogenetics/genomic alterations 

 

3.1 Deregulations of CRLF2, JAK2, and 

IKZF1 

 Genomic alterations that leads to CRLF2 

overexpression are detected in approximately 

10% of B-precursor ALL cases [76, 77], and 

60% of B-ALL in children with Down syndrome 

[77].  The CRLF2 gene encodes a type I 

cytokine receptor that can heterodimerize with 

IL7 receptor subunit (IL7R). It is activated upon 

binding of its ligand, thymic stromal 

lymphopoietin (TSLP). Genomic rearrangements 

via intrachromosomal deletions centromeric or 

translocations to the immunoglobulin heavy 

chain locus lead to uncontrolled transcription of 

CRLF2 [76-79]. Interestingly, CRLF2 

abnormalities are strongly associated with the 

presence of IKZF1 deletions and JAK mutations 

[19, 77-80] 

 Approximately 25% of B-ALL patients 

harbor a CRLF2F232C mutation.  This mutation 

occurs at the transition between the extracellular 

and transmembrane domains. CRLF2F232C 

promotes constitutive dimerization and ligand-

independent signaling activity in the absence of 

both of TSLP and IL7R. Patients with wild-type 

CRLF2 (~40% of total B-ALL) often harbor a 

JAK2R683G mutation [78]. In these cases, 

CRLF2 is believed to serve as a scaffold for the 

JAK proteins and their substrates. Strikingly, one 

report stated that 100% of B-ALLs harboring 

JAK2 mutations also overexpress the CRLF232C 

mutation, suggesting that CRLF2 serves an 

essential scaffold function for mutant JAK2 

activity [81]. In the remaining B-ALL cases with 

CRLF2 overexpression, neither CRLF2 nor JAK2 

mutations are detected. 

 Growth factor-dependent myeloid and 

lymphoid cells can be transformed by 

CRLF2F232C alone, wild-type CRLF2 with 

mutant JAK2, or treatment of cells that express 

CRLF2/IL7R with TSLP. In each of the three 

scenarios, transformation renders the cells highly 

sensitive to JAK inhibitors. Only cells 

transformed by CRLF2/mutant JAK2 have 

constitutive JAK2 phosphorylation. This suggests 

that other JAK proteins, or additional kinases 

inhibited by these agents, mediate CRLF2F232C 

and canonical TSLP signaling [7]. 

 Patients with B-ALL associated with 

overexpression of CRLF2 have poor outcomes, 

indicating an unmet therapeutic need in this 
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population. Enzymatic inhibitors of JAK2 are 

being developed for clinical treatment of 

myeloproliferative neoplasms.  These can also be 

used to treat B-ALL with rearrangements of 

CRLF2 and other tumors with continually 

activated JAK2 signaling. It is also important to 

mention that overexpression of CRLF2 confers a 

BCR/ABL-like transcriptional signature [81]. This 

suggests a dependence on CRLF2 signaling that 

could be targeted with kinase inhibitors. Several 

retrospective studies suggest that CRLF2 

alterations have poor prognoses [4, 76, 77, 79, 

82]. 

 IKZF1 deletions, including deletions of the 

entire gene and deletions of specific exons, are 

present in approximately 15% of B-ALL cases 

[83]. IKZF1 deletions tend to occur in older 

children and are associated with higher WBC 

counts and poor outcomes [19, 84]. KZF1 

deletions are also present in a large proportion of 

BCR/ABL1 cases [19, 85]. Moreover, ALL 

arising in children with Down syndrome appears 

to have elevated rates of IKZF1 deletions [86]. 

IKZF1 deletions are also common in cases with 

CRLF2 genomic alterations and in Ph–like ALL 

[4, 11, 19]. Multiple reports have documented the 

adverse prognostic significance of an IKZF1 

deletion, and most studies have reported that this 

deletion is an independent predictor of poor 

outcome based upon multivariate analyses[4, 11, 

19, 30, 87-90]. 

 

3.2 Ph-like ALL 
 Ph-like ALL refers to a small proportion of 

ALL cases that exhibit a gene expression profile 

similar to BCR/ABL1–positive ALL patients but 

are triggered by alternative genetic events [11, 

30]. Ph-like occurs in 10% to 15% of pediatric 

ALL patients, who have a poor prognosis. 

Deletions or mutations of the IKZF1 gene are 

associated with approximately 40% of Ph-like 

ALL [9, 11, 30, 78, 90]. The hallmark of 

disrupted IKZF1 protein function is an activated 

kinase signaling cascade similar to BCR/ABL1–

positive ALL. Still, about 50% cases contain 

CRLF2 genomic alterations [79] and around 

25% cases contain JAK mutations [80]. The 

remaining cases have been noted to have a series 

of translocations with a common theme of 

involving the ABL1, JAK2, PDGFRB, or EPOR 

genes [9]. Fusion proteins from these gene 

chimeras have been noted in some cases to 

transform cells but have responded to tyrosine 

kinase inhibitors both in vitro and in vivo [9], 

suggesting potential therapeutic strategies for 

these patient carrying these translocations. Point 

mutations in kinase genes, except for JAK1 and 

JAK2, are rare in Ph-like ALL cases [78]. 

Transcriptome and whole-genome sequencing of 

Ph-like ALL identified more genetic alterations 

involving in several kinase signaling pathways, 

including EBF1-PDGFRB, which is comprised 

of the transcription factor EBF1 (early B-cell 

factor 1) fused to the receptor tyrosine kinase 

PDGFRB (platelet-derived growth factor 

receptor β) [9, 91]. Several reports suggest that 

use of tyrosine kinase inhibitors to treat B-ALL 

patients harboring EBF1-PDGFRB 

rearrangement may be beneficial [92, 93]. 

 

3.3 TP53 alterations 

 TP53 alterations are detected in about 11% 

of patients with ALL. These alterations include 

amino acid mutations and/or copy number 

alterations. Approximately half of these 

alterations are observed at initial diagnosis, and 

half are newly observed at time of relapse [94]. 

Patients with TP53 alterations are associated with 

poor outcomes [94].  

 

3.4 PAX5 deletions and rearrangements 

 Genome-wide analysis reveals that mutations 

of PAX5 are observed in 32% of childhood B-

ALL cases [84]. The PAX5 gene encodes a 

transcription factor that belongs to the paired box 

gene family. It is necessary for normal 

hematopoietic development [95]. PAX5 

alterations also occur co-incidentally with other 

genetic alterations, such as ETV6 rearrangements 

and JAK2 mutations [96]. A recent study results 

indicate that PAX5 alterations may play a role in 

the inherited susceptibility of B-ALL [97]. 

 

4. Chromosomal number alterations 

 

4.1 Down syndrome 

 Children with Down syndrome (DS) (also 

called trisomy 21, due to affected individuals 
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owning a full or partial extra copy of 

chromosome 21) have higher risk of developing 

both ALL and acute myeloid leukemia (AML) 

[98, 99]. Approximately 2% to 3% of childhood 

ALL cases are associated with DS [100-102]. In 

childhood ALL with DS, CRLF2 is highly 

expressed in about 50% to 60% of cases [80, 86, 

103]. This is in stark contrast to what is observed 

in B-ALL children without DS, where over-

expression of CRLF2 is rarely detected (<10%) 

[19, 80, 103]. IKZF1 deletions were observed in 

up to 35% of ALL patients with DS. Moreover, 

IKZF1 deletions were associated with 

significantly diminished outcomes in these 

patients [86]. JAK2 mutations were found in 

approximately 20% of ALL cases in children 

with DS [86, 103-106]. Nevertheless, there is no 

preliminary evidence to support the correlation 

between JAK2 mutation status and 5-year event-

free survival in ALL children with DS [103, 105]. 

 A portion of ALL cases have been associated 

with a specific genomic alteration known as 

intrachromosomal amplification of chromosome 

21 (iAMP21), which presents three or more 

copies of the RUNX1 gene within amplified 

regions on chromosome 21 [107, 108]. This 

region contains RUNX1 gene, miR-802, and 

genes responding to DS. Similar as ALL in DS, 

iAMP21 leukemia patients often exhibit 

concomitant genetic alterations of IKZF1, 

CDKN2A, PAX5, ETV6, and RB1 [109]. 

Overexpression of CRLF2 driven by the promoter 

of P2RY8 is observed in 35% of childhood ALL 

associated with iAMP21 [110]. iAMP21 occurs 

in approximately 2% of B-ALL in older children 

and is associated with poorer outcomes and high 

risk for relapse [109]. 

 

4.2 High hyperdiploidy 

 Leukemia cells possessing 51 to 65 

chromosomes per cell, or a DNA index greater 

than 1.16, are defined as high hyperdiploidy. 

High hyperdiploidly occurs in 20% to 25% of 

cases of B- ALL but very rarely in T-ALL [111]. 

This condition can be evaluated by measuring 

the DNA content of cells (DNA index) or by 

karyotyping. High hyperdiploidy is usually 

associated with clinically favorable outcomes 

and have a better prognosis [111-113]. 

 Patients with trisomies of chromosomes 4, 

10, and 17 (triple trisomies) have been shown to 

have particularly favorable outcomes, as 

demonstrated by the analyses from Pediatric 

Oncology Group (POG) and Children's Cancer 

Group (CCG) [114]. POG data also suggest that 

patients with trisomies of 4 and 10, regardless of 

their chromosome 17 status, have an excellent 

prognosis [115]. 

 Near triploidy (68–80 chromosomes) and 

near tetraploidy (>80 chromosomes) are rarely 

found in ALL patients and appear to be 

biologically distinct from high hyperdiploidy 

[116]. It has not been determined whether near 

triploidy and tetraploidy are associated with a 

favorable prognosis [116, 117]. If patients with 

high hyperdiploidy are also associated with 

chromosome translocation involving oncogene 

overexpression, these patients commonly have 

poor outcomes. For instance, one study showed 

that approximately 8% of Ph
+
 patients also had 

high hyperdiploidy [118], and the outcome of 

these patients was poor when compared to Ph
-
 

high hyperdiploid patients. 

 

4.3 Hypodiploidy 

 B-ALL patients with fewer than the normal 

number of chromosomes are defined as 

hypodipoidy. Examples include near haploid (24 

to 29 chromosomes), low hypodiploid (33 to 39 

chromosomes), high hypodiploid (40 to 43 

chromosomes), and near diploid (44 

chromosomes) [119]. Compared to non-

hypodiploid cases, patients with near haploid or 

low hypodiploid have an increased risk of 

treatment failure [119, 120]. Overall, patients 

with fewer chromosomes have a worse outcome 

than those with more chromosomes [119]. 

 The recurring genomic alterations that occur 

in cases of hypodiploidy differ between near 

haploid and low hypodiploid ALL cases [121]. 

Receptor tyrosine kinase (RTK) signaling, RAS 

signaling, and IKZF3 are more commonly found 

in near haploid ALL. TP53, RB1, and IKZF2 

genetic alterations are more commonly found in 

low hypodiploid ALL [121]. 

 Overall, a number of recurrent chromosomal 

abnormalities have been shown to have 

prognostic significance, especially in B-ALL. 
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Some chromosomal abnormalities are associated 

with more favorable outcomes, such as high 

hyperdiploidy (51–65 chromosomes)  

 

4.4 Treatment and relapsed ALL 

 Chemotherapy is a first choice treatment for 

most ALL cases. The early response to 

chemotherapy by patients has strong prognostic 

significance. There are three phases of 

chemotherapy for ALL: induction, consolidation, 

and maintenance. Most patients also will be 

treated with intrathecal chemotherapy to help 

treat or prevent disease in the central nervous 

system (CNS). For some patients with ALL, a 

long-term course of chemotherapy is required to 

achieve remission. For these patients, bone 

marrow transplantation may offer a better 

alternative to achieve a cure or long-term 

remission. In these cases, a bone marrow or cord 

blood transplantation procedure is preceded by 

chemotherapy, with or without radiation, to 

destroy the diseased cells and bone marrow. 

Hematopoietic stem cells (HSCs) are then 

transplanted to replace disease-forming cells with 

healthy ones. 

 Induction therapy brings about a remission in 

most patients, but over time, some patients will 

relapse. Patients that relapse after chemotherapy 

can be treated with different chemotherapy drugs 

and/or more intense doses. For these patients, a 

HSC transplant is necessary, as a second round of 

chemotherapy is less likely to bring about long-

term remission. In such cases, a bone marrow or 

cord blood transplant may be the best option for a 

cure or long-term remission. 

 

Conclusions 

 

 Currently, genetic alterations in B-ALL have 

been well defined, but much work remains to be 

done. Next-generation sequencing of ALL 

genomes will help to identify mutations at 

nucleotide-level resolution and provide the clues 

necessary to identify novel genes associated with 

ALL.  
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