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Abstract 

 

 Neonatal immune system inherits its immunosuppressive features derived from the mutual negotiation 

of immune status between fetus and mother during pregnancy. In the same time, an active immune arm has 

to be quickly established in newborns in the context of growing maturation to combat various threats that 

never existed in the intrauterine environment. These seemingly contradictive functional requirements build 

the unique characteristics of neonate immunity with regard to its cell components of both innate and adaptive 

system, immune polarity of cytokines, responsiveness to pathogens, relation to genetic factors, as well as the 

propensity of allergy. This review summarizes these factors and the characteristics of human neonate 

immunity, a defenses system in development yet very critical for newborns’ health and survival.  
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Introduction  

 

 From a sterile intrauterine environment to an 

open environment full of different antigens never 

encountered before, neonatal immune system 

experiences a huge transition in the first several 

weeks after birth. Both fetuses and mothers 

develop an immunosuppressive property during 

pregnancy to avoid the pathologic inflammation 

through negotiating their mutual antigenic 

differences. On the other hand, neonates have to 

arm their defense system to counteract the abrupt 

influx of new pathogens immediately at birth. 
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These seemingly contradictive requirements for 

the immune system comprise the unique features 

of neonate immunity [1]. Most of the components 

of the immune system are present at birth. 

However, an increasing body of evidence has 

strongly suggested that both innate and adaptive 

immunity in neonates are at their suboptimal 

conditions for elimination of pathogens [2]. In 

addition, there is an age-dependent maturation of 

neonate immunity [3]. 

Invading pathogens are constrained by 

coordinated actions of innate and adaptive 

immunity. The innate immune system is mainly 

comprised of macrophages, monocytes, NK cells 

and neutrophils that immediately confine 

pathogens at the site of infection. The adaptive 

immunity is responsible for pathogen elimination 

in late phase of infection as well as the formation 

of antigen-specific immunological memories. 

Toll-like receptors (TLRs) and cytokines 

determine the magnitude of 

early innate responses and bridge late antigen-

specific adaptive immunity. This review will 

summarize the characteristics of these cell 

components and soluble factors particularly in 

neonates. 

 

Neutrophils  

 

 Adequate phagocytic function of neutrophils 

is critical for control of microbial infections in 

neonates. The number of neutrophils reaches 

13×10
9
/L in peripheral blood within 12 hours 

after birth possibly resulting from the drastic 

stimulation of delivery. The neutrophils count 

goes down in the next 72 hours before it 

gradually brings to the level of adult [4]. Study 

on calf revealed that neutrophils are the 

predominant leukocytes in newborn animal and 

the cell count is four times of that in 3-week-old 

ones [5]. Despite of higher cell count of 

neutrophils, the phagocytosis of these devourers 

in neonates is much lower compared with older 

children and adults. The phagocytosis could be 

regulated by many factors such as colostrum from 

mother, the stresses associated with parturition 

[6], high blood cortisol levels at birth [7] and cell 

adhesion molecules (β2 integrin, L-selectin, etc.) 

critical for cell migration [8]. It has been reported 

that migration of neutrophils into tissues is 

impaired in neonates [2]. In addition, neutrophils 

from cord blood of neonates exhibited a reduced 

in vitro response to interleukin- 8 (IL-8) and 

other chemotactic cytokines [9]. 

 

Monocytes/Macrophages 

  

 In contrast to neutrophils, the number of 

circulating monocytes in neonates is similar to 

that in adults [10]. Nevertheless, the abilities of 

chemotaxis, adhesion, phagocytosis and 

cytotoxicity of these cells in neonates, 

particularly in preterm ones are much poorer than 

that in adults [4]. Macrophages in neonates show 

a diminished response to lipopolysaccharide 

(LPS) during the bacterial infection because they 

are not able to produce enough inflammatory 

cytokines such as IL-1, IL-12 and tumor 

necrosis factor alpha (TNF-α) [11, 12]. Instead, 

immunosuppressive cytokines such as IL-6 and 

IL-10 are produced at a much higher level by 

neonatal macrophages. Besides this, neonatal 

macrophages express reduced levels of CD14, 

TLR2 and TLR4 which are critical mediators in 

LPS and S. pneumoniae binding and recognition 

[13]. 

 

NK cells  

 

 Study on the cord blood of human neonates 

revealed that both the absolute number and 

percentage of NK cells are higher than those in 

adult peripheral blood [12]. The fact that preterm 

neonates have an increased risk for infections 

owning to a reduced NK cell percentage [14] 

emphasizes the critical role of neonatal NK cells 

in preventing early infections. The CD56-CD16+ 

NK cells are more abundant in neonates instead 

of more mature CD56+CD16+ NK cells, the 

major NK subset in adults [15]. It is well 

documented that neonatal NK cells have reduced 

capacity for recognizing and clearing pathogens 

[16]. Neonate NK cells show less direct 

cytotoxicity and antibody-dependent cell-

mediated cytotoxicity (ADCC) regardless the fact 

that there is an elevated expression of granzyme 

B and perforin. Spontaneous cytotoxicity of 

NK cells from purified cord blood against NK-
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sensitive targets is reduced compared with those 

isolated from adult peripheral blood [17]. The 

ADCC function of NK cells improves to adult 

level as a result of increasing IL-2 expression 

during the first year of life [4]. 

 

Toll-Like Receptors    

 

 TLRs are able to recognize and bind to the 

invading microbial pathogens. There are 10 TLR 

family members being identified in human and 

each one recognizes a number of ligands, such as 

LPS, porin and peptidoglycan [18]. All TLRs are 

transmembrane proteins with cytoplasmic 

Toll/IL-1 receptor domain [19]. Working together 

with certain adapters, TLRs are able to activate 

immune cell signaling cascades that regulate the 

initiation and activation of innate and adaptive 

immunity [20]. Both mRNAs and proteins of 

TLRs and adapters discovered so far are 

detectable in neonates [21]. It has been shown 

that the TLR4 expression begins before birth and 

its expression level is largely reduced in preterm 

neonates than that in full-term ones [22]. The 

expression regulation of different TLRs could be 

very different during microbial infections in 

neonates. For example, TLR2 is significantly 

increased during the neonatal sepsis while TLR4 

remains unchanged [21]. In addition, neonatal 

monocytes generally produce a higher IL-6/TNF-

α ratio in response to TLR-mediated signaling 

[23]. The monocytic production of TNF-α after 

TLR1/2, TLR2/6, TLR4 and TLR7 activation 

was revealed 10-1000 folds higher in adults 

relative to neonates [24].  

 

T Cells  

 

 There is a transitory period in newborns 

characterized by an absence of memory T cells 

and a slow adaptive immune response with 

tolerance features [25]. The number of T cells in 

fetus rises up from the third-month in uterus and 

starts to decrease after the delivery; a decrease 

lasts for the next 6 months. Majority of T cells in 

neonates are still in their naive status marked by 

the expression of CD45RA and lack of CD45RO. 

The activated CD25+ T cells in neonates, beside 

their lower number compared to adults, possess 

an attenuated potential for initiation of primary 

immune response [26, 27]. While a comparable 

IL-2 production by neonatal T-cell is observed 

upon activation, it is clearly evident that 

interferon gamma (IFN-γ) and TNF-α are 

significantly reduced as compared to adult T-cell. 

It is possibly just a reflection of a shortage of 

memory T cells rather than a result of faulty 

development or dysfunction of neonatal T cells 

[28]. Although few T cells present in the spleens 

in the first week of life, T cells especially the 

Th2-type ones preferentially develop in neonatal 

spleens [29]. It has been proved that neonatal T 

cells skew to Th2 differentiation and are 

defective in developing protective Th1-type 

responses. This at least in part accounts for the 

susceptibility to infectious agents and the 

propensity to allergic diseases in neonates. 

Compared with T cells, T cells are of 

disproportionately importance in immune defense 

of neonates. Neonatal  T cells acquire a strong, 

pleiotropic functional responsiveness, and are 

exempted from IFN- deficiency neonatal T 

cells exhibited. Susceptible to viral infections and 

suboptimal cytokine responses in preterm 

newborns are believed to have relation to 

impaired expression of TLR3 and TLR7 on T 

cells that otherwise at normal level in term 

neonates [30]. Th17 cells were recently found to 

be an important mediator for combating bacterial 

and fungal infections. Study on human neonates 

revealed a higher expression levels of IL-23R, 

RORt, and STAT3 prior to activation, all of 

which contribute to the Th17 bias upon activation 

[31]. The presence of IL-2 along with TGF-

exclusively drives neonatal naive T cells to 

differentiate into T regulatory cells (Tregs) [32]. 

Tregs are present at high frequency in neonatal 

lymph nodes and in human cord blood [33, 34]. 

These neonatal Tregs are capable to mediate 

immunological self-tolerance and quell various 

immune responses [35]. CD8+ T cell are potent 

in host defense against virus infection and 

intracellular pathogens [36]. Neonatal CD8+ T 

cell activation is significantly repressed compared 

with that in adults owing to low expression of IL-

12 [37]. Other studies, however, have 

demonstrated that DNA vaccines given at birth 

resulted in a rapid induction of adult-like 
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protective antigen-specific CD8+ T cell 

responses in terms of cytokine profile and 

effector functions within neonatal life [38]. 

 

B Cells and Immunoglobulins 

 

  B-1 and B-2 cells are the two main subsets of 

B lymphocytes. B-1 cells are defined as part of 

the innate immune system and produce 

immunoglobulins (Igs). B-2 cells exist in the 

secondary lymphoid organs and are believed to 

be the major B-cell subset responsible for 

adaptive immunity, which can undergo Ig class 

switching and differentiate into memory cells 

[39]. It is still a mystery why the level of B-1 

common lymphoid progenitors in neonatal bone 

marrow is much higher in comparison with adults 

[40]. B-cell responses such as to polysaccharide 

antigens are relatively low in neonates due to 

decreased intrinsic ability of macrophages to 

promote regular B-cell functions [41]. In 

addition, neonatal T-cell expresses a reduced 

level of CD40L, an important ligand for CD40 on 

B-cell to aid Ig class switching. As a 

consequence, neonatal B-cell has a subdued Ig 

class switching upon activation which leads to a 

decrease in IgG and IgA production relative to 

adults [42].  

 Due to the immaturity of endogenous B-cell 

function, transfer of passive immunity especially 

Igs from mother is of paramount importance for 

neonate survival. Maternal Igs are able to pass to 

neonates either in utero, or through ingestion of 

Ig-rich colostrum by neonates [43, 44]. IgGs 

transport through placenta beginning with IgG1 

followed by IgG4, IgG3, and IgG2 during the 

trimester of the pregnancy. IgG levels in cord 

blood of preterm infants had been shown to be 

much lower than that in term ones [45]. The 

maternal IgG including antigen-specific IgG 

starts to transfer across the placenta from the 

maternal circulation as early as 32 weeks of 

gestation. Maternal IgG is still detectable until 

12-18 months after birth, while IgG production is 

sharply produced by infant first few months, 

reaching to adult level in the following 2-7 years 

[46]. Both the colostrum and mature breast milk 

contain high level of secretory IgA (sIgA), which 

confers immune protection to neonates before full 

maturation of immunity. While sIgA is the 

predominant antibody, human milk also contains 

IgM and IgG, the latter becoming more abundant 

in later lactation [47]. To be noted, sIgA also 

plays an immunosuppressive role to inhibit pro-

inflammatory gastrointestinal responses to oral 

antigens [48]. Besides protective roles, maternal 

antibodies unfortunately have adverse effects for 

neonates in some occasions. For example, 

autoantibodies created by maternal auto-reactive 

B cells passing through the placenta lead to a 

poor health outcome of newborns [49]. In 

addition, presumed protective maternal antibodies 

are likely to inhibit infants’ immune responses to 

vaccines through various possible mechanisms 

[50]. Conversely, recent data demonstrated that a 

sufficient B-cell function to mount broadly 

neutralizing antibodies against HIV-1 could be 

successfully elicited in HIV-1-infected infants 

[51]. Therefore, it is implied that the concept of 

relative weak vaccine responses in neonates 

presumably attributed to immature B-cell 

function and maternal antibodies inhibition might 

require adjustment according to different 

episodes. 

 

Cytokines  
 

 Cytokines regulate innate immunity and 

connect the innate immunity with antigen-

specific adaptive immunity [52]. Neonate 

immunity is characterized by a decrease in IFN-γ, 

IL-12, IL-18, and TNF-α, and an increase in IL-

1, IL-6, IL-23 and IL-10 [52, 53]. Th1 

cytokines, including IL-2 and IFN-γ, are able to 

stimulate cell-mediated immunity. IL-4, main 

representative of Th2 cytokines, plays a key role 

in inducing B-cell differentiation and is 

associated with allergy [41]. It has been known 

that the main character of cytokines polarity 

distinguishing neonates from adults is the Th2-

biased immune response [28]. Following 

stimulation in culture, neonate monocytes express 

reduced TNF-α relative to adults [29, 54]. On the 

contrary, expression of IL-8 and TLR4 in 

monocytes is greater in neonates than in adults 

[55]. Cytokine levels, generally being stable in 

the first week of life, are greatly influenced by 

the maturity of immune system as well as the 
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activation of immune components by infections. 

Levels of many cytokines, cytokine antagonists 

or chemokines, including IL-1R, IL-2, IL-6, IL-

8, IL-10, IL-12, IL-13, IL-15, IL-17, TNF-α, 

IFN-γ, and MCP-1, are much lower in preterm 

neonates compared to term ones [56]. Those 

cytokines unable to cross placental barrier, such 

as IL-1, IL-6 and TNF-α, are found elevated in 

umbilical cord blood during infections, especially 

in neonatal sepsis [57]. Rapid change of blood 

cytokines levels before acute phase of sepsis is a 

prognostic alarm for the oncoming threat [58]. 

IL-1β, IL-6, IL-8, IL-2 soluble receptor (SIL2R) 

and TNF-α have been observed to increase in 

neonates with bacterial infection. These increases 

in cytokines occur before the clinical presentation 

and the laboratory confirmation of sepsis [59]. 

 

Primary Immunodeficiencies  
 

 It is no doubt that the genetic factor is one of 

the main determinants for immune function. 

Neonates with immunodeficiency caused by 

genetic mutations might show no signs of illness 

possibly because of functional compensation by 

antibodies passively transferred from healthy 

mother. However, many young infants and 

children who suffered from recurrent infections, 

or complications after being given to Bacillus 

Calmette-Guerin vaccine were eventually found 

to have primary immunodeficiencies (PIDs) [60]. 

PIDs is referred as a heterogeneous group of over 

200 different disorders that result from genetic 

defects in the development, function, or both of 

immunity [61]. PIDs result in a wide range of 

clinical symptoms including but not limited to 

allergy, persistent infections, inflammation, 

autoimmunity, and other malignancies. Although 

PIDs affect all age groups [62], major efforts are 

taken to develop new methods for detection of 

PIDs in the neonatal period [61]. Laboratory 

diagnostic measurement of serum 

immunoglobulin, complete blood counts, 

respiratory burst assay, T-cell proliferation, T-cell 

receptor (TCR) rearrangement excision circles 

(TRECs) and TCR Vβ chain usage are currently 

used for screening PIDs [63]. PIDs can be 

broadly classified depending on which 

component of the immune system is affected. 

Antibody-mediated, T-cell and combined, 

phagocyte, as well as complement deficiencies 

are the most common types [64]. 

 

Antibody-mediated deficiencies 

 

Antibody-mediated deficiencies, the most 

common type of PIDs, account for almost 55% of 

all PIDs diagnoses according to the European 

Society for Immunodeficiencies (ESID) registry 

[65]. Patients with antibody-mediated 

deficiencies usually show symptoms 6 months 

after birth with recurrent sinopulmonary 

infections by encapsulated bacteria [66]. 

Approximately 20 antibody-mediated 

deficiencies have been discovered to date, and the 

typical disorders include Bruton’s 

agammaglobulinemia (X-linked 

agammaglobulinemia, XLA), common variable 

immunodeficiency (CVID), selective IgA 

deficiency, specific antibody deficiency and IgG 

subclass deficiency [67]. Patients afflicted with 

XLA are characterized by limited circulating B 

cells and low levels of serum IgG, IgA and IgM. 

Genetic alterations in the Bruton’s tyrosine 

kinase (BTK) gene are responsible for most XLA 

cases, causing defects in B-cell development and 

maturation [68]. Although most CVID patients 

have normal number of circulating B 

lymphocytes, serum IgG and at least one of IgM 

or IgA isotypes are reported lower than normal in 

a large proportion of patients [69]. 

 

T-cell and combined deficiencies 

 

 T-cell deficiencies account for 9% of PIDs in 

the ESID registry [65]. T-cell deficiencies usually 

present early in life, and most of them are 

characterized by severe combined 

immunodeficiency (SCID) with life-threatening 

infections and failure to thrive [70]. Omenn 

syndrome (OS) [71] is one type of SCIDs 

characterized by symptoms of erythroderma, 

hepatosplenomegaly, lymphadenopathy, 

hypogammaglobulinemia, uniformly 

eosinophilia, alopecia, elevated serum IgE, and 

oligoclonal TCR repertoire. OS could be a result 

from partial V(D)J recombination activity due to 

missense mutation of RAG1 or RAG2 genes [72], 
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or a mutation of IL-7RA gene [73]. Other novel 

types of SCIDs are continuously being identified. 

X-linked immunodeficiency with Mg2+ defect, 

Epstein-Barr virus (EBV) infection, and 

neoplasia disease (XMEN) exemplifies the fact 

that some worse conditions of PIDs can be 

restricted through good health management 

without gene therapy or stem cell transplantation. 

The NK cells and CD8+ T cells in XMEN patient 

exhibit impaired cytolytic responses against EBV 

due to a defective expression of NKG2D, a 

consequence of decreased intracellular free Mg2+ 

due to MAGT1 mutation. Magnesium 

supplementation in XMEN patients restored the 

intracellular Mg2+ and NKG2D expression which 

concurrently reduced the EBV-infected cells in 

vivo [74]. 

 

Phagocyte deficiencies 

 

 Phagocyte deficiencies are the result of 

abnormalities in dendritic cells, neutrophils or 

macrophages, which account for 12.5% of 

primary immunodeficiency diseases in the ESID 

registry [65]. The symptoms of recurrent 

pyogenic bacterial/fungal infections or septicemia 

are the suspicious elements for phagocyte 

deficiencies [75]. Chronic granulomatous disease, 

hyper-IgE syndrome and leukocyte adhesion 

deficiency type-1 (LAD-1) [76, 77] are typical 

phagocytic deficiencies commonly present in the 

first few weeks of newborns. Chronic 

granulomatous disease is the most common 

phagocytic disorder caused by mutations in the 

NADPH oxidase [78]. Hyper-IgE syndrome is a 

phagocytic deficiency characterized by extremely 

high levels of serum IgE levels, and dominant-

negative mutations in STAT3 were found to be 

responsible for most cases [79]. LAD1 is a rare 

inherited phagocytic deficiency caused by 

mutations in the gene encoding 2 integrin [80]. 

 

Complement deficiencies 

 

 Of all PIDs, complement deficiencies 

represent no more than 1% of identified cases. 

Patients with these disorders readily become 

victims of recurrent infections or systemic 

autoimmune diseases [75]. Complement 

deficiencies may involve deficiency in early 

complement pathway components (C1q, C1r, C2, 

and C4), late complement pathway components 

(C5, C6, C7, C8, and C9) or C3 and regulatory 

components [81]. 

 

Allergy 

 

 Allergy is one of the most common diseases 

in children, such as asthma and food allergy.  

Clinical presentations of allergy is rarely 

observed in the first month after birth. However, 

the status of being allergic is determined by 

various factors as early as during the pregnancy 

[82, 83]. Many allergens can transmit through 

placenta and antigen-specific T cells can be 

detected in the neonatal cord blood. It has been 

observed that high concentration of soluble form 

of CD14 (sCD14) in amniotic fluid reduced the 

risk of atopic dermatitis in newborns. Infants fed 

with breast milk containing low levels of sCD14 

had a higher risk of subsequent allergy, 

suggesting that the protective effect of breast 

milk may be mediated through innate immune 

mechanisms [84]. In addition, polymorphism in 

TLR4 gene which down-regulates the function of 

CD14 or TLR4 in newborns was linked with a 

reduced risk of allergy and an alleviated severity 

of the disease [85]. Prenatal exposures to animal 

species, stables and barns prevent children from 

atopic diseases possibly through inducing anti-

Th2 immune phenotype as well as regulating 

TLR signaling pathways [86, 87]. In addition, 

both cell count and function of Tregs in cord 

blood are up-regulated in neonates born to the 

farming mothers compared to those born to non-

farming mothers. The decreased number in Tregs 

is believed to be responsible for the development 

and progression of allergy [88]. Interestingly, 

caesarean delivery is proved to have relationship 

with increased risk of asthma and allergic 

diseases, which is attributed to different 

gastrointestinal microbial colonization at birth 

compared to those delivered vaginally [89]. 

Cow’s milk allergy (CMA), also defined as cow’s 

milk protein allergy, is the most common allergy 

in newborns especially for formula-fed infants 

[90]. CMA is associated with higher risk of other 

allergic conditions, such as asthma, atopic 
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eczema, and egg allergy [91]. Neonates with 

CMA always present an increased production of 

Th2 cytokines IL-4 and IL-13, which promotes Ig 

class switching and IgE secretion by plasma cells 

[92, 93]. Suppression of Tregs by inhibitory 

cytokines such as IL-10 and TGF-β is one of the 

possible mechanisms contributing to CMA 

formation [91]. Meanwhile, colostrum and breast 

milk contain a variety of molecules including the 

most abundant sIgA which can influence immune 

responses in the gut-associated lymphoid tissue 

of neonates [93]. The low level of both cow-milk-

specific and total IgA in colostrum or breast milk 

is associated with increased risk of CMA 

development [94].   

 

Conclusion  

 

 Neonate immunity is vital for newborns’ 

health and survival and its unique features 

distinguished from adults are the main 

determinant for many characteristics of infants 

and children’s diseases. The Th2 cytokine 

polarity and low responsiveness to pathogens, 

immune-related gene mutations, and prenatal 

antigen experiences of both innate and adaptive 

immunity inscribe neonates’ susceptibility to 

infectious agents as well as the propensity to 

allergens. Increasing body of data on neonate 

immunity are acquired through comparison 

between neonates cord blood and adults’ 

peripheral blood, in addition to studies on 

preterm infants. However, these accomplishments 

could not conceal our naivety for understanding 

this enigmatic defense system that seems 

vulnerable yet can fulfill ‘just enough’ functions 

for infant survival, leaving an enough plasticity 

for immune educating through counteracting with 

different episode of pathogenic invasion each 

individual neonate encounters.   
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